الأولى بكالوريا علوم تجريبية

ī

الفرض المحروس رقم:(1)

ثانوية أبي القاسم الزياني

تمرين1:(6ن)

ينزلق جسم (S) نعتبره نقطيا كتلته m=500~g فوق سكة رأسية ABC تتكون من جزأين كما يبين الشكل جانبه.

مائل بزاوية $^{\circ}$ heta=60 بالنسبة للخط : AB=3~m مائل بزاوية heta=60

الأفقى.

. r=50~cm جزء دائري مرڪزه O و شعاعه: BC

1- نعتبر الاحتكاكات مهملة على الجزء AB.

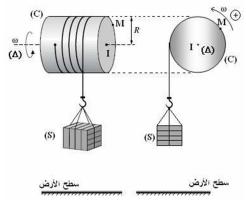
AB أجرد القوى المطبقة على AB خلال حركته على الجزء AB ثم مثلها دون سلم. (1)

(1) . \overrightarrow{AB} احسب شغل الوزن \overrightarrow{P} للجسم (S) خلال الانتقال -2

الطبقة من طرف الجزء AB على (S) خلال (S) على (S) خلال (S)

(1). AB الانتقال

 \overrightarrow{BC} خلال الانتقال \overrightarrow{BC} ، نعتبر الاحتكاكات مكافئة لقوة \overrightarrow{f} مماسية للمسار \overrightarrow{BC} و منحاها معاكس لمنحى الحركة و شدتها ثابتة: f=2,1~N .

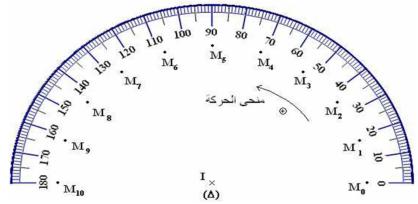

(1) . r عبر عن الارتفاع h بدلالة θ و e^{-1} .

(1) . C استنتج شغل وزن الجسم (S) خلال انتقاله من B إلى -2 -2

 $(1) \cdot C$ من (S) من (S) من (S) احسب شغل قوة الاحتكاك خلال انتقال

تمرين2:(7ن)

نعتبر أسطوانة (C)متجانسة شعاعها R=10~cm قابلة للدوران حول محور (Δ) أفقي يمر من مركزها R=10~cm نلف حول الأسطوانة خيطا غير قابل للامتداد كتلته مهملة، و نربط بطرفه الأسفل جسما صلبا (S) كتلته m=600 الخيط لا ينزلق على الأسطوانة (أنظر الشكل).



 $au=20\,\mathrm{ms}$ أثناء دوران الأسطوانة نسجل مواضع نقطة M من محيط الأسطوانة أثناء مدد زمنية متتالية و متساوية قيمتها فنحصل على التسجيل التالى:

الأولى بكالوريا علوم تجريبية

الفرض المحروس رقم:(1)

ثانوية أبي القاسم الزياني

نعتبر الاحتكاكات بين الأسطوانة و محور دورانها مكافئة لمزدوجة عزمها $M_{\scriptscriptstyle C}$ ثابت.

- . نأخذ النقطة $\, M_0 \,$ أصلا للأفاصيل و لحظة تسجيلها أصلا للتواريخ $\, -1 \,$
- M_4 و M_2 و المواضع M_4 و M_5 المواضع M_6 وجد قيمة السرعة الزاوية للنقطة M_4 في كل من المواضع و M_4 و M_5 المواضع M_5 المواضع M_6 و M_6 و M_6 و M_6 المواضع M_6 المواضع M_6 و M_6 المواضع M_6
 - (0,5) استنتج طبيعة حركة الأسطوانة. (0,5)
 - (1) . M اكتب المعادلة الزمنية لحركة النقطة -3
 - (3,5) احسب شغل وزن الجسم ((3)عندما تنجز الأسطوانة (5) دورات. (5,5)
 - $M_{_{\mathrm{C}}}$ بتطبيق مبرهنة العزوم، احسب $M_{_{\mathrm{C}}}$ عزم مزدوجة الاحتكاك. (1,5)
 - 4- عندما يصل الجسم (S) إلى سطح الأرض، تخضع الأسطوانة إلى مزدوجة الاحتكاك، فتتوقف بعد انجاز 13 دورة.

احسب شغل مزدوجة الاحتكاك. (1 ن)

تمرین3:(4ن)

 $heta=25^{\circ}\mathrm{C}$ على غاز ثنائي الأوكسجين عند درجة الحرارة $V=2\mathrm{L}$ على غاز ثنائي الأوكسجين عند درجة الحرارة P=1,2 bar تحت الضغط

بتطبيق معادلة الحالة للغازات الكاملة:

- 1- حدد كمية مادة ثنائي الأوكسجين داخل القارورة. (1)
- 2- أوجد قيمة الحجم المولي في ظروف درجة الحرارة و الضغط التي يوجد عليها ثنائي الأوكسجين في القارورة. (1)
 - (1) . 1 بين أنه يمكن استنتاج قيمة الحجم المولي من نتيجة السؤال -3
- 4- نرفع درجة حرارة القارورة حتى $0^{\circ}C=0^{\circ}$. حدد قيم متغيرات الحالات الأربع التي تميز الغاز $0^{\circ}C=0^{\circ}$. هل تغيرت قيمة الحجم المولى (1)

تمرين4:(3ن)

نحصل على محلول لكبريتات الألومنيوم حجمه V=40 ml بإذابة كتلة m=2 ,6 g من كبريتات الألومنيوم المميه $\left(AL_2\left(SO_4\right)_3,14H_2o\right)$.

- 1-أحسب الكتلة المولية لكبريتات الألومنيوم المميه.(1)
 - 2-أحسب تركيز المذاب المأخوذ.(1)
- 3-أكتب معادلة الذوبان و استنتج التركيز المولي الفعلي لكل أيون متواجد في المحلول.(1)